Intelligent Room-Based Identification of Electricity Consumption with an Ensemble Learning Method in Smart Energy

Author:

Le Vincent,Ramirez Joshua,Alamaniotis Miltiadis

Abstract

This paper frames itself in the realm of smart energy technologies that can be utilized to satisfy the electricity demand of consumers. In this environment, demand response programs and the intelligent management of energy consumption that are offered by utility providers will play a significant role in implementing smart energy. One of the approaches to implementing smart energy is to analyze consumption data and provide targeted contracts to consumers based on their individual consumption characteristics. To that end, the identification of individual consumption features is important for suppliers and utilities. Given the complexity of smart home load profiles, an appliance-based identification is nearly impossible. In this paper, we propose a different approach by grouping appliances based on their rooms; thus, we provide a room-based identification of energy consumption. To this end, this paper presents and tests an intelligent consumption identification methodology, that can be implemented in the form of an ensemble of artificial intelligence tools. The ensemble, which comprises four convolutional neural networks (CNNs) and four k-nearest neighbor (KNN) algorithms, is fed with smart submeter data and outputs the identified type of room in a given dwelling. Results obtained from real-world data exhibit the superiority of the ensemble, with respect to accuracy, as compared with individual CNN and KNN models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Multi-kernel Analysis Paradigm Implementing the Learning from Loads Approach for Smart Power Systems;Alamaniotis,2019

2. Fuzzy Leaky Bucket System for Intelligent Management of Consumer Electricity Elastic Load in Smart Grids;Alamaniotis;Front. Artif. Intell. Fuzzy Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3