Arc Ablation Resistance and Dielectric Strength Properties of PTFE/BN Composites

Author:

Zhao Xianping,Nie YongjieORCID,Zhao Tengfei,Wang Ke,Song Bingchen,Yu Shihu,Li Shengtao

Abstract

The substantial improvements in transmission voltage, which have been adopted to meet fast-growing energy demands, require more reliable power equipment and higher-quality insulating materials. The polytetrafluoroethylene (PTFE) nozzle, as the key part of a high-voltage circuit breaker, is often subjected to arc ablation and breakdown phenomena. Thus, it is very urgent to develop nozzles with better performance. In this study, PTFE/boron nitride (BN) composites were prepared. The relationships among the BN filler loading, thermal transition properties, spectral reflectance properties, arc ablation resistance, and AC dielectric breakdown performances, as well as their corresponding mechanisms, were studied. Experimental results show that the thermal conductivity and thermal diffusivity of PTFE/BN composites increased monotonously with BN loading, and that both parameters were improved by 41% and 44%, respectively, for 11 wt % composites compared with pure PTFE. Moreover, PTFE/BN composites had higher light reflectance in the wavelength range from 320 to 2500 nm. The PTFE/BN composites presented better arc ablation resistance performance with increased BN loading, which was improved by 88.5%. It is thought that the increased thermal conductivity, thermal diffusivity, the strong light reflectance, and surface sediment after arc ablation contribute to the improvement in arc ablation resistance performance. The AC breakdown strength of PTFE/BN composites was enhanced by 30.93%, attributed to the good heat dissipation properties introduced by the BN fillers. Thus, filling BN into the PTFE matrix would be helpful to solve the equipment issue that comes from the improvement in transmission voltage.

Funder

Basic Research Plan of Yunnan Province-Youth Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3