Effects of Daidzein, Tempeh, and a Probiotic Digested in an Artificial Gastrointestinal Tract on Calcium Deposition in Human Osteoblast-like Saos-2 Cells

Author:

Harahap Iskandar Azmy1ORCID,Olejnik Anna2ORCID,Kowalska Katarzyna2ORCID,Suliburska Joanna1ORCID

Affiliation:

1. Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland

2. Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland

Abstract

Adequate calcium intake is crucial for the prevention and treatment of bone-related issues. Developing a nutritional source of readily bioavailable calcium is particularly significant for individuals deficient in this essential element and at risk of developing osteoporosis. This research aimed to evaluate the impact of tempeh (T), daidzein (D), and Lactobacillus acidophilus (LA) within a simulated intestinal environment consisting of Caco-2 epithelial and Saos-2 cells, focusing on their implications for bone mineralization mechanisms. In the initial phase, calcium bioaccessibility from calcium citrate (CaCt), LA, D, the daidzein combination D–CaCt–LA (D1:1:1), and the tempeh combination T–CaCt–LA (T1:1:1) was assessed through digestion simulation. The calcium content of both untreated and digested samples was determined using atomic absorption spectrometry (AAS). In the subsequent stage, the digested samples were used to induce intestinal absorption in differentiated enterocyte-like Caco-2 cells. The permeable fractions were then evaluated in a culture of osteoblast-like Saos-2 cells. Preliminary cellular experiments employed the MTT assay to assess cytotoxicity. The results indicated that the analyzed products did not influence the deposition of extracellular calcium in Saos-2 cells cultured without mineralization stimulators. The combined formulations of permeable fractions of digested CaCt, LA, D, and T demonstrated the capacity to enhance the proliferation of Saos-2 cells. In Saos-2 cells, D, D1:1:1, and LA showed no discernible impact on intracellular calcium accumulation, whereas T and T1:1:1 reduced the calcium deposits. Additionally, mRNA transcripts and alkaline phosphatase (ALP) activity levels in Saos-2 cells cultured without mineralization induction were unaffected by the analyzed products. An examination of the products revealed no discernible effect on ALP activity or mRNA expression during Saos-2 cell differentiation. Our findings suggest that tempeh, daidzein, and L. acidophilus did not positively impact cellular calcium deposition in Saos-2 cells. However, tempeh, daidzein and its combination, and L. acidophilus might enhance the process of osteogenic differentiation in Saos-2 cells. Nevertheless, this study did not identify any synergistic impact on calcium deposition and the process of osteogenic differentiation in Saos-2 cells of isoflavones and probiotics.

Funder

Polish National Science Centre

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3