Affiliation:
1. Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
2. Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
Abstract
The purpose of this study is to develop and evaluate a self-nanoemulsifying drug delivery system (SNEDDS) to improve the oral absorption of poorly water-soluble enzalutamide (ENZ). Considering the rapid recrystallization of the drug, based on solubility and crystallization tests in various oils, surfactants and co-surfactants, Labrafac PG 10%, Solutol HS15 80%, and Transcutol P 10%, which showed the most stable particle size and polydispersity index (PDI) without drug precipitation, were selected as the optimal SNEDDS formulation. The optimized SNEDDS formulation showed excellent dissolution profiles for all the drugs released at 10 min of dissolution due to the increased surface area with a small particle size of approximately 16 nm. Additionally, it was confirmed to be stable without significant differences in physical and chemical properties for 6 months under accelerated conditions (40 ± 2 °C, 75 ± 5% RH) and stressed conditions (60 ± 2 °C). Associated with the high dissolutions of ENZ, pharmacokinetic parameters were also greatly improved. Specifically, the AUC was 1.9 times higher and the Cmax was 1.8 times higher than those of commercial products (Xtandi® soft capsule), resulting in improved oral absorption. Taken together with the results mentioned above, the SNEDDS could be an effective tool as a formulation for ENZ and other similar drugs.
Funder
National Research Foundation of Korea
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献