β-Caryophyllene Inhibits Endothelial Tube Formation by Modulating the Secretome of Hypoxic Lung Cancer Cells—Possible Role of VEGF Downregulation

Author:

Wittig Felix1,Koch Florian1,Pannenberg Liza1,Bekeschus Sander2ORCID,Ramer Robert1,Hinz Burkhard1ORCID

Affiliation:

1. Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany

2. ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany

Abstract

β-Caryophyllene (BCP), a bicyclic sesquiterpene that is a component of the essential oils of various spice and food plants, has been described as a selective CB2 cannabinoid receptor agonist. In the present study, the effect of BCP on angiogenesis was investigated. It was found that conditioned media (CM) from BCP-treated hypoxic A549 lung cancer cells exhibited a concentration-dependent inhibitory effect on human umbilical vein endothelial cell (HUVEC) tube formation induced by CM from vehicle-treated hypoxic A549 cells. There was an associated concentration-dependent decrease in the proangiogenic factor vascular endothelial growth factor (VEGF) in the CM, with both BCP inhibitory effects (tube formation, VEGF secretion) being CB2 receptor-dependent. A reduction of the transcription factor hypoxia-inducible factor 1α (HIF-1α) was furthermore detected. The antiangiogenic and VEGF-lowering properties of BCP were confirmed when CM from another lung cancer cell line, H358, were tested. When directly exposed to HUVECs, BCP showed no significant effect on tube formation, but at 10 µM, impaired VEGF receptor 2 (VEGFR2) phosphorylation triggered by recombinant VEGF in a CB2 receptor-independent manner. In summary, BCP has a dual antiangiogenic effect on HUVECs, manifested in the inhibition of tube formation through modulation of the tumor cell secretome and additionally in the inhibition of VEGF-induced VEGFR2 activation. Because the CB2 agonist has no psychoactive properties, BCP should continue to be evaluated preclinically for further antitumor effects.

Funder

German Federal Ministry for Education and Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3