The Association of Hippocampal Long-Term Potentiation-Induced Gene Expression with Genetic Risk for Psychosis

Author:

Wellard Natalie L.1,Clifton Nicholas E.12ORCID,Rees Elliott1,Thomas Kerrie L.1,Hall Jeremy1

Affiliation:

1. Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK

2. Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QF, UK

Abstract

Genomic studies focusing on the contribution of common and rare genetic variants of schizophrenia and bipolar disorder support the view that substantial risk is conferred through molecular pathways involved in synaptic plasticity in the neurons of cortical and subcortical brain regions, including the hippocampus. Synaptic long-term potentiation (LTP) is central to associative learning and memory and depends on a pattern of gene expression in response to neuronal stimulation. Genes related to the induction of LTP have been associated with psychiatric genetic risk, but the specific cell types and timepoints responsible for the association are unknown. Using published genomic and transcriptomic datasets, we studied the relationship between temporally defined gene expression in hippocampal pyramidal neurons following LTP and enrichment for common genetic risk for schizophrenia and bipolar disorder, and for copy number variants (CNVs) and de novo coding variants associated with schizophrenia. We observed that upregulated genes in hippocampal pyramidal neurons at 60 and 120 min following LTP induction were enriched for common variant association with schizophrenia and bipolar disorder subtype I. At 60 min, LTP-induced genes were enriched in duplications from patients with schizophrenia, but this association was not specific to pyramidal neurons, perhaps reflecting the combined effects of CNVs in excitatory and inhibitory neuron subtypes. Gene expression following LTP was not related to enrichment for de novo coding variants from schizophrenia cases. Our findings refine our understanding of the role LTP-related gene sets play in conferring risk to conditions causing psychosis and provide a focus for future studies looking to dissect the molecular mechanisms associated with this risk.

Funder

Wellcome Trust PhD studentship

UKRI Future Leaders Fellowship

UKRI Career Development Award

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3