Immp2l Enhances the Structure and Function of Mitochondrial Gpd2 Dehydrogenase

Author:

Clarke Raymond A.123ORCID,Govindaraju Hemna45,Beretta Martina6,Olzomer Ellen6,Lawther Adam J.7,Walker Adam K.178ORCID,Fang Zhiming2,Eapen Valsamma123ORCID,Hyams Tzipi Cohen2ORCID,Killingsworth Murray29ORCID,Bridge Wallace6ORCID,Turner Nigel45,Siddiqui Khawar Sohail6ORCID

Affiliation:

1. Discipline of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia

2. Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia

3. Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia

4. Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia

5. Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia

6. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia

7. Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia

8. Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia

9. NSW Health Pathology, Liverpool Hospital Campus, Liverpool, NSW 2107, Australia

Abstract

‘Inner mitochondrial membrane peptidase 2 like’ (IMMP2L) is a nuclear-encoded mitochondrial peptidase that has been conserved through evolutionary history, as has its target enzyme, ‘mitochondrial glycerol phosphate dehydrogenase 2′ (GPD2). IMMP2L is known to cleave the mitochondrial transit peptide from GPD2 and another nuclear-encoded mitochondrial respiratory-related protein, cytochrome C1 (CYC1). However, it is not known whether IMMP2L peptidase activates or alters the activity or respiratory-related functions of GPD2 or CYC1. Previous investigations found compelling evidence of behavioural change in the Immp2lKD−/− KO mouse, and in this study, EchoMRI analysis found that the organs of the Immp2lKD−/− KO mouse were smaller and that the KO mouse had significantly less lean mass and overall body weight compared with wildtype littermates (p < 0.05). Moreover, all organs analysed from the Immp2lKD−/− KO had lower relative levels of mitochondrial reactive oxygen species (mitoROS). The kidneys of the Immp2lKD−/− KO mouse displayed the greatest decrease in mitoROS levels that were over 50% less compared with wildtype litter mates. Mitochondrial respiration was also lowest in the kidney of the Immp2lKD−/− KO mouse compared with other tissues when using succinate as the respiratory substrate, whereas respiration was similar to the wildtype when glutamate was used as the substrate. When glycerol-3-phosphate (G3P) was used as the substrate for Gpd2, we observed ~20% and ~7% respective decreases in respiration in female and male Immp2lKD−/− KO mice over time. Together, these findings indicate that the respiratory-related functions of mGpd2 and Cyc1 have been compromised to different degrees in different tissues and genders of the Immp2lKD−/− KO mouse. Structural analyses using AlphaFold2-Multimer further predicted that the interaction between Cyc1 and mitochondrial-encoded cytochrome b (Cyb) in Complex III had been altered, as had the homodimeric structure of the mGpd2 enzyme within the inner mitochondrial membrane of the Immp2lKD−/− KO mouse. mGpd2 functions as an integral component of the glycerol phosphate shuttle (GPS), which positively regulates both mitochondrial respiration and glycolysis. Interestingly, we found that nonmitochondrial respiration (NMR) was also dramatically lowered in the Immp2lKD−/− KO mouse. Primary mouse embryonic fibroblast (MEF) cell lines derived from the Immp2lKD−/− KO mouse displayed a ~27% decrease in total respiration, comprising a ~50% decrease in NMR and a ~12% decrease in total mitochondrial respiration, where the latter was consistent with the cumulative decreases in substrate-specific mediated mitochondrial respiration reported here. This study is the first to report the role of Immp2l in enhancing Gpd2 structure and function, mitochondrial respiration, nonmitochondrial respiration, organ size and homeostasis.

Funder

Sydney Partnership for Health Education Research and Enterprise

National Breast Cancer Foundation Australia

Schizophrenia Research Institute, UNSW, Australia

Neuroscience Research Australia, NSW, Australia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3