Inherited Retinal Degeneration Caused by Dehydrodolichyl Diphosphate Synthase Mutation–Effect of an ALG6 Modifier Variant

Author:

Monson Elisha1,Cideciyan Artur V.2ORCID,Roman Alejandro J.2ORCID,Sumaroka Alexander2,Swider Malgorzata2,Wu Vivian2,Viarbitskaya Iryna2,Jacobson Samuel G.2,Fliesler Steven J.34ORCID,Pittler Steven J.15ORCID

Affiliation:

1. Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA

2. Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Departments of Ophthalmology and Biochemistry, and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York—University at Buffalo, Buffalo, NY 14203, USA

4. Research Service, VA Western NY Healthcare System, Buffalo, NY 14215, USA

5. Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Abstract

Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina.

Funder

U.S.P.H.S.

NEI core

UAB Vision Science Research Center

VA Western NY Healthcare System

VA BLR&D Research Career Scientist award

the S.G. Jacobson MD PhD Memorial Fund

unrestricted funds

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3