Novel Insights into the Circadian Rhythms Based on Long Noncoding and Circular RNA Profiling

Author:

Tan Xiaodong1ORCID,Zhang Jiawen1,Dong Jie1,Huang Minjie1ORCID,Zhou Zhenzhen1,Wang Deqian1ORCID

Affiliation:

1. Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

Abstract

Circadian rhythm disorders pose major risks to human health and animal production activity, and the hypothalamus is the center of circadian rhythm regulation. However, the epigenetic regulation of circadian rhythm based on farm animal models has been poorly investigated. We collected chicken hypothalamus samples at seven time points in one light/dark cycle and performed long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA sequencing to detect biomarkers associated with circadian rhythm. We enhanced the comprehensive expression profiling of ncRNAs and mRNAs in the hypothalamus and found two gene sets (circadian rhythm and retinal metabolism) associated with the light/dark cycle. Noncoding RNA networks with circadian expression patterns were identified by differential expression and circadian analysis was provided that included 38 lncRNAs, 15 circRNAs, and 200 candidate genes. Three lncRNAs (ENSGALT00000098661, ENSGALT00000100816, and MSTRG.16980.1) and one circRNA (novel_circ_010168) in the ncRNA–mRNA regulatory network were identified as key molecules influencing circadian rhythm by regulating AOX1 in retinal metabolism. These ncRNAs were predicted to be related to pernicious anemia, gonadal, eye disease and other disorders in humans. Together, the findings of this study provide insights into the epigenetic mechanisms of circadian rhythm and reveal AOX1 as a promising target of circadian rhythm regulation.

Funder

Key Research and Development Program of Zhejiang Province

Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3