Design of Acoustical Bessel-Like Beam Formation by a Pupil Masked Soret Zone Plate Lens

Author:

Tarrazó-Serrano Daniel,Castiñeira-Ibáñez Sergio,Minin Oleg,Candelas Pilar,Rubio Constanza,Minin Igor

Abstract

The image performance of acoustic and ultrasound sensors depends on several fundamental parameters such as depth of focus or lateral resolution. There are currently two different types of acoustic diffractive lenses: those that form a diffraction-limited spot with a shallow depth of focus (zone plates) and lenses that form an extended focus (quasi-Bessel beams). In this paper, we investigate a pupil-masked Soret zone plate, which allows the tunability of a normalized angular spectrum. It is shown that the depth of focus and the lateral resolution can be modified, without changing the lens structure, by choosing the size of the pupil mask. This effect is based on the transformation of spherically-converging waves into quasi-conical waves, due to the apodization of the central part of the zone plate. The theoretical analysis is verified with both numerical simulations and experimental measurements. A Soret zone plate immersed in water with D/2F = 2.5 and F = 4.5 λ changes its depth of focus from 2.84 λ to 5.9 λ and the lateral resolution increases from 0.81 λ to 0.64 λ at a frequency of 250 kHz, by modifying the pupil mask dimensions of the Soret zone plate.

Funder

Ministerio de Economía y Competitividad

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatiotemporal characteristics of magneto-acousto-electric fields generated by Bessel beams;Physics Letters A;2024-10

2. Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications;International Journal of Extreme Manufacturing;2024-07-24

3. Formation of Bessel Type Acoustic Beams for Underwater Communications;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03

4. Acoustic Bessel-like beam generation using phononic crystals;Journal of Applied Physics;2024-01-10

5. Implementation and Verification of Fresnel Zone Plate Patterns Designed by Optimization of Surface Phase;Journal of the Korean Society for Precision Engineering;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3