Novel RNA-Seq Signatures Post-Methamphetamine and Oxycodone Use in a Model of HIV-Associated Neurocognitive Disorders

Author:

Athota Pranavi1ORCID,Nguyen Nghi M.12ORCID,Schaal Victoria L.1ORCID,Jagadesan Sankarasubramanian2ORCID,Guda Chittibabu2ORCID,Yelamanchili Sowmya V.123ORCID,Pendyala Gurudutt1234ORCID

Affiliation:

1. Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA

2. Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA

3. National Strategic Research Institute, Nebraska Medical Center, Omaha, NE 68198, USA

4. Child Health Research Institute, Omaha, NE 68198, USA

Abstract

In the 21st century, the effects of HIV-associated neurocognitive disorders (HAND) have been significantly reduced in individuals due to the development of antiretroviral therapies (ARTs). However, the growing epidemic of polysubstance use (PSU) has led to concern for the effects of PSU on HIV-seropositive individuals. To effectively treat individuals affected by HAND, it is critical to understand the biological mechanisms affected by PSU, including the identification of novel markers. To fill this important knowledge gap, we used an in vivo HIV-1 Transgenic (HIV-1 Tg) animal model to investigate the effects of the combined use of chronic methamphetamine (METH) and oxycodone (oxy). A RNA-Seq analysis on the striatum—a brain region that is primarily targeted by both HIV and drugs of abuse—identified key differentially expressed markers post-METH and oxy exposure. Furthermore, ClueGO analysis and Ingenuity Pathway Analysis (IPA) revealed crucial molecular and biological functions associated with ATP-activated adenosine receptors, neuropeptide hormone activity, and the oxytocin signaling pathway to be altered between the different treatment groups. The current study further reveals the harmful effects of chronic PSU and HIV infection that can subsequently impact neurological outcomes in polysubstance users with HAND.

Funder

NIH

departmental startup funds

Lieberman Endowment

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3