A Mixed-Strategy-Based Whale Optimization Algorithm for Parameter Identification of Hydraulic Turbine Governing Systems with a Delayed Water Hammer Effect

Author:

Ding Tan,Chang Li,Li Chaoshun,Feng Chen,Zhang Nan

Abstract

For solving the parameter optimization problem of a hydraulic turbine governing system (HTGS) with a delayed water hammer (DWH) effect, a Mixed-Strategy-based Whale Optimization Algorithm (MSWOA) is proposed in this paper, in which three improved strategies are designed and integrated to promote the optimization ability. Firstly, the movement strategies of WOA have been improved to balance the exploration and exploitation. In the improved movement strategies, a dynamic ratio based on improved JAYA algorithm is applied on the strategy of searching for prey and a chaotic dynamic weight is designed for improving the strategies of bubble-net attacking and encircling prey. Secondly, a guidance of the elite’s memory inspired by Particle swarm optimization (PSO) is proposed to lead the movement of the population to accelerate the convergence speed. Thirdly, the mutation strategy based on the sinusoidal chaotic map is employed to avoid prematurity and local optimum points. The proposed MSWOA are compared with six popular meta-heuristic optimization algorithms on 23 benchmark functions in numerical experiments and the results show that the MSWOA has achieved significantly better performance than others. Finally, the MSWOA is applied on parameter identification problem of HTGS with a DWH effect, and the comparative results confirm the effectiveness and identification accuracy of the proposed method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3