Author:
Ding Tan,Chang Li,Li Chaoshun,Feng Chen,Zhang Nan
Abstract
For solving the parameter optimization problem of a hydraulic turbine governing system (HTGS) with a delayed water hammer (DWH) effect, a Mixed-Strategy-based Whale Optimization Algorithm (MSWOA) is proposed in this paper, in which three improved strategies are designed and integrated to promote the optimization ability. Firstly, the movement strategies of WOA have been improved to balance the exploration and exploitation. In the improved movement strategies, a dynamic ratio based on improved JAYA algorithm is applied on the strategy of searching for prey and a chaotic dynamic weight is designed for improving the strategies of bubble-net attacking and encircling prey. Secondly, a guidance of the elite’s memory inspired by Particle swarm optimization (PSO) is proposed to lead the movement of the population to accelerate the convergence speed. Thirdly, the mutation strategy based on the sinusoidal chaotic map is employed to avoid prematurity and local optimum points. The proposed MSWOA are compared with six popular meta-heuristic optimization algorithms on 23 benchmark functions in numerical experiments and the results show that the MSWOA has achieved significantly better performance than others. Finally, the MSWOA is applied on parameter identification problem of HTGS with a DWH effect, and the comparative results confirm the effectiveness and identification accuracy of the proposed method.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献