Investigations on the Developed Full Frequency- Dependent Cable Model for Calculations of Fast Transients

Author:

Hoshmeh Abdullah,Schmidt Uwe,Gürlek Akif

Abstract

The knowledge about the behavior of cables is substantial in cases of transients or in cases of faults. However, there are only a few models that are tailored to the current requirements for calculations of transient phenomena in three-phase cable systems. These models are based on complex structures. PI-section cable models with simple structures were previously qualified only for calculations in the frequency domain. A new full frequency-dependent cable model to simulate transient phenomena is introduced and validated. The model is based on lumped parameters with cascaded frequency-dependent PI-sections. For the implementation and the integration in simulation tools, it is important to investigate the impact of the PI-section parameters to the accuracy, the stability and the mathematical robustness. In this work, the impact of the frequency dependence of cable parameters, the length distribution and the number of PI-sections on the results of the developed three-phase cable model have been discussed. For simulations in the time domain, two algorithms have been presented to optimize the number of PI-sections based on a specified accuracy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Power Systems Electromagnetic Transients Simulation;Watson,2007

2. Power System Transients: Parameter Determination;Juan,2009

3. Propagation of Travelling Waves on Transmission Lines - Frequency Dependent Parameters

4. Numerical Modelling of Frequency-Dependent Transmission-Line Parameters in an Electromagnetic Transients Program

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3