Secondary Frequency Stochastic Optimal Control in Independent Microgrids with Virtual Synchronous Generator-Controlled Energy Storage Systems

Author:

Yang Ting,Zhang YajianORCID,Wang Zhaoxia,Pen Haibo

Abstract

With the increasing proportion of renewable energy in microgrids (MGs), its stochastic fluctuation of output power has posed challenges to system safety and operation, especially frequency stability. Virtual synchronous generator (VSG) technology, as one effective method, was used to smoothen frequency fluctuation and improve the system’s dynamic performance, which can simulate the inertia and damping of the traditional synchronous generator. This study outlines the integration of VSG-controlled energy storage systems (ESSs) and traditional synchronous generators so they jointly participate in secondary frequency regulation in an independent MG. Firstly, a new uncertain state-space model for secondary frequency control is established, considering the measurement noises and modelling error. Then, an improved linear quadratic Gaussian (LQG) controller is designed based on stochastic optimal control theory, in which the dynamic performance index weighting matrices are optimized by combining loop transfer recovery (LTR) technology and the distribution estimation algorithm. On the issue of secondary frequency devices’ output power allocation, the dynamic participation factors based on the ESS’s current state of charge (SOC) are proposed to prevent the batteries’ overcharging and overdischarging problems. The energy storage devices’ service life can be prolonged and OPEX (operational expenditure) decreased. Multiple experimental scenarios with real parameters of MGs are employed to evaluate the performance of the proposed algorithm. The results show that, compared with the lead-compensated-proportional-integral-derivative (LC-PID) control and robust μ-control algorithms, the proposed stochastic optimal control method has a faster dynamic response and is more robust, and the fluctuations from renewable energy and power loads can be smoothened more effectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3