Parallel Implicit Solvers for 2D Numerical Models on Structured Meshes

Author:

Zhang Yaoxin1ORCID,Al-Hamdan Mohammad Z.123ORCID,Chao Xiaobo1

Affiliation:

1. National Center for Computational Hydroscience and Engineering, University of Mississippi, Oxford, MS 38655, USA

2. Department of Civil Engineering, University of Mississippi, University, MS 38677, USA

3. Department of Geology and Geological Engineering, University of Mississippi, University, MS 38677, USA

Abstract

This paper presents the parallelization of two widely used implicit numerical solvers for the solution of partial differential equations on structured meshes, namely, the ADI (Alternating-Direction Implicit) solver for tridiagonal linear systems and the SIP (Strongly Implicit Procedure) solver for the penta-diagonal systems. Both solvers were parallelized using CUDA (Computer Unified Device Architecture) Fortran on GPGPUs (General-Purpose Graphics Processing Units). The parallel ADI solver (P-ADI) is based on the Parallel Cyclic Reduction (PCR) algorithm, while the parallel SIP solver (P-SIP) uses the wave front method (WF) following a diagonal line calculation strategy. To map the solution schemes onto the hierarchical block-threads framework of the CUDA on the GPU, the P-ADI solver adopted two mapping methods, one block thread with iterations (OBM-it) and multi-block threads (MBMs), while the P-SIP solver also used two mappings, one conventional mapping using effective WF lines (WF-e) with matrix coefficients and solution variables defined on original computational mesh, and a newly proposed mapping using all WF mesh (WF-all), on which matrix coefficients and solution variables are defined. Both the P-ADI and the P-SIP have been integrated into a two-dimensional (2D) hydrodynamic model, the CCHE2D (Center of Computational Hydroscience and Engineering) model, developed by the National Center for Computational Hydroscience and Engineering at the University of Mississippi. This study for the first time compared these two parallel solvers and their efficiency using examples and applications in complex geometries, which can provide valuable guidance for future uses of these two parallel implicit solvers in computational fluids dynamics (CFD). Both parallel solvers demonstrated higher efficiency than their serial counterparts on the CPU (Central Processing Unit): 3.73~4.98 speedup ratio for flow simulations, and 2.166~3.648 speedup ratio for sediment transport simulations. In general, the P-ADI solver is faster than but not as stable as the P-SIP solver; and for the P-SIP solver, the newly developed mapping method WF-all significantly improved the conventional mapping method WF-e.

Funder

U.S. Department of Agriculture, Agricultural Research Service

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3