Learning Transformed Dynamics for Efficient Control Purposes

Author:

Ghnatios Chady1ORCID,Mouterde Joel2ORCID,Tomezyk Jerome2ORCID,Da Silva Joaquim2,Chinesta Francisco1

Affiliation:

1. PIMM Laboratory, Arts et Métiers Institute of Technology, 151 Boulevard de l’Hôpital, 75013 Paris, France

2. SKF Magnetic Mechatronic, 27950 Saint-Marcel, France

Abstract

Learning linear and nonlinear dynamical systems from available data is a timely topic in scientific machine learning. Learning must be performed while enforcing the numerical stability of the learned model, the existing knowledge within an informed or augmented setting, or by taking into account the multiscale dynamics—for both linear and nonlinear dynamics. However, when the final objective of such a learned dynamical system is to be used for control purposes, learning transformed dynamics can be advantageous. Therefore, many alternatives exists, and the present paper focuses on two of them: the first based on the discovery and use of the so-called flat control and the second one based on the use of the Koopman theory. The main contributions when addressing the first is the discovery of the flat output transformation by using an original neural framework. Moreover, when using the Koopman theory, this paper proposes an original procedure for learning parametric dynamics in the latent space, which is of particular interest in control-based engineering applications.

Funder

SKF Magnetic Mechatronics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3