The Application of the Piecewise Linear Method for Non-Linear Programming Problems in Ride-Hailing Assignment Based on Service Level, Driver Workload, and Fuel Consumption

Author:

Megantara Tubagus Robbi1ORCID,Supian Sudradjat2ORCID,Chaerani Diah2ORCID,Bon Abdul Talib3

Affiliation:

1. Doctoral Program in Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

2. Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia

3. Department of Production and Operations, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia

Abstract

Ride-hailing services have grown rapidly, presenting challenges such as increased traffic congestion, inefficient driver workload distribution, and environmental concerns like higher fuel consumption and emissions. This study develops a non-linear ride-hailing assignment model addressing these issues by considering service level, driver workload, and fuel consumption. A piecewise linear method was employed to handle a non-linear programming model, and the method was modified to function autonomously without operator intervention. The model’s performance was evaluated using a publicly accessible dataset of taxi trips in Manhattan, focusing on indicators such as passenger waiting time, driver workload distribution, and fuel consumption. Numerical simulations demonstrated significant improvements: a 15% reduction in average passenger waiting time, a 20% improvement in balancing driver workloads, and a 10% decrease in overall fuel consumption, contributing to reduced emissions and environmental impact. The modified piecewise linear method proved effective in optimizing ride-hailing assignments, providing a more efficient and sustainable solution. The model also showed robustness in handling large datasets, ensuring scalability and applicability to various urban settings. These findings highlight the model’s potential to enhance operational efficiency and promote sustainability in ride-hailing services. By integrating considerations for service level, driver workload, and fuel consumption, the model offers a holistic approach to addressing the key challenges faced by the ride-hailing industry. This study provides valuable insights for future ride-hailing development and implementations of ride-hailing systems, promoting practices that are both efficient and environmentally friendly.

Funder

Indonesian Ministry of Education, Culture, Research, and Technology for Penelitian Disertasi Doktor in 2023

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3