Solid Waste Detection Using Enhanced YOLOv8 Lightweight Convolutional Neural Networks

Author:

Li Pan1,Xu Jiayin1,Liu Shenbo2

Affiliation:

1. School of Computer and Communications Engineering, Changsha University of Science and Technology, Changsha 410015, China

2. School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China

Abstract

As urbanization accelerates, solid waste management has become one of the key issues in urban governance. Accurate and efficient waste sorting is a crucial step in enhancing waste processing efficiency, promoting resource recycling, and achieving sustainable development. However, there are still many challenges inherent in today’s garbage detection methods. These challenges include the high computational cost of detection, the complexity of the detection background, and the difficulty in accurately evaluating the spatial relationship between rectangular detection frames during the inspection process. Therefore, this study improves the latest YOLOv8s object detection model, introducing a garbage detection model that balances light weight and detection performance. Firstly, this study introduces a newly designed structure, the CG-HGNetV2 network, to optimize the backbone network of YOLOv8s. This novel framework leverages local features, surrounding context, and global context to enhance the accuracy of semantic segmentation. It efficiently extracts features through a hierarchical approach, significantly reducing the computational cost of the model. Additionally, this study introduces an innovative network called MSE-AKConv, which integrates an attention module into the network architecture. The irregular convolution operations facilitate efficient feature extraction, enhancing the ability to extract valid information from complex backgrounds. In addition, this study introduces a new method to replace CIoU (complete intersection over union). On the basis of calculating IoU (intersection over union), it also considers the outer boundary of the two rectangles. By calculating the minimum distance between the boundaries, this method handles cases where boundaries are close but not overlapping, offering a more detailed similarity assessment than that provided by traditional IoU. In this study, the model was trained and evaluated using a publicly available dataset. Specifically, the model has improved the precision (P), recall rate (R), and mAP@50 (mean average precision at 50) by 4.80%, 0.10%, and 1.30%, while reducing model parameters by 6.55% and computational demand by 0.03%. This study not only provides an efficient automated solution for waste detection, but also opens up new avenues for ecological environmental protection.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3