Binary Encoding-Based Federated Learning for Traffic Sign Recognition in Autonomous Driving

Author:

Wen Yian1,Zhou Yun2,Gao Kai3

Affiliation:

1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China

3. College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Autonomous driving involves collaborative data sensing and traffic sign recognition. Emerging artificial intelligence technology has brought tremendous advances to vehicular networks. However, it is challenging to guarantee privacy and security when using traditional centralized machine learning methods for traffic sign recognition. It is urgent to introduce a distributed machine learning approach to protect private data of connected vehicles. In this paper, we propose a local differential privacy-based binary encoding federated learning approach. The binary encoding techniques and random perturbation methods are used in distributed learning scenarios to enhance the efficiency and security of data transmission. For the vehicle layer in this approach, the model is trained locally, and the model parameters are uploaded to the central server through encoding and perturbing. The central server designs the corresponding decoding, correction scheme, and regression statistical method for the received binary string. Then, the model parameters are aggregated and updated in the server and transmitted to the vehicle until the learning model is trained. The performance of the proposed approach is verified using the German Traffic Sign Recognition Benchmark data set. The simulation results show that the convergence of the approach is better with the increase in the learning cycle. Compared with baseline methods, such as the convolutional neural network, random forest, and backpropagation, the proposed approach achieves higher accuracy in the process of traffic sign recognition, with an increase of 6%.

Funder

Hunan Provincial Department of Education Scientific Research Project of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3