Dichotomous Proportional Hazard Regression Model: A Case Study on Students’ Dropout

Author:

Martínez-Flórez Guillermo1ORCID,Tovar-Falón Roger1ORCID,Barrera-Causil Carlos2ORCID

Affiliation:

1. Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería 230002, Colombia

2. Grupo de Investigación Davinci, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia

Abstract

In problems involving binary classification, researchers often encounter data suitable for modeling dichotomous responses. These scenarios include medical diagnostics, where outcomes are classified as “disease” or “no disease”, and credit scoring in finance, determining whether a loan applicant is “high risk” or “low risk”. Dichotomous response models are also useful in many other areas for estimating binary responses. The logistic regression model is one option for modeling dichotomous responses; however, other statistical models may be required to improve the quality of fits. In this paper, a new regression model is proposed for cases where the response variable is dichotomous. This novel, non-linear model is derived from the cumulative distribution function of the proportional hazard distribution, and is suitable for modeling binary responses. Statistical inference is performed using a classical approach with the maximum likelihood method for the proposed model. Additionally, it is demonstrated that the introduced model has a non-singular information matrix. The results of a simulation study, along with an application to student dropout data, show the great potential of the proposed model in practical and everyday situations.

Funder

Universidad de Córdoba

Publisher

MDPI AG

Reference25 articles.

1. Beta-normal Distribution and Its Applications;Eugene;Commun. Stat.-Theory Methods,2002

2. The Beta Modified Weibull Distribution;Silva;Lifetime Data Anal.,2010

3. The Beta-Weibull Geometric Distribution;Cordeiro;Statistics,2013

4. A New Family of Generalized Distributions;Cordeiro;J. Stat. Comput. Simul.,2011

5. The Kumaraswamy Modified Weibull Distribution: Theory and Applications;Cordeiro;J. Stat. Comput. Simul.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3