To Exit or Not to Exit: Cost-Effective Early-Exit Architecture Based on Markov Decision Process

Author:

Kim Kyu-Sik1,Lee Hyun-Suk1ORCID

Affiliation:

1. Department of AI and Robotics, Sejong University, Seoul 05006, Republic of Korea

Abstract

Recently, studies on early-exit mechanisms have emerged to reduce the computational cost during the inference process of deep learning models. However, most existing early-exit architectures simply determine early exiting based only on a target confidence level in the prediction, without any consideration of the computational cost. Such an early-exit criterion fails to balance accuracy and cost, making it difficult to use in various environments. To address this problem, we propose a novel, cost-effective early-exit architecture in which an early-exit criterion is designed based on the Markov decision process (MDP). Since the early-exit decisions within an early-exit model are sequential, we model them as an MDP problem to maximize accuracy as much as possible while minimizing the computational cost. Then, we develop a cost-effective early-exit algorithm using reinforcement learning that solves the MDP problem. For each input sample, the algorithm dynamically makes early-exit decisions considering the relative importance of accuracy and computational cost in a given environment, thereby balancing the trade-off between accuracy and cost regardless of the environment. Consequently, it can be used in various environments, even in a resource-constrained environment. Through extensive experiments, we demonstrate that our proposed architecture can effectively balance the trade-off in different environments, while the existing architectures fail to do so since they focus only on reducing their cost while preventing the degradation of accuracy.

Funder

Ministry of Trade, Industry & Energ

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3