Methods for Assessing the Layered Structure of the Geological Environment in the Drilling Process by Analyzing Recorded Phase Geoelectric Signals

Author:

Abzhanova Ainagul1,Bykov Artem2ORCID,Surzhik Dmitry3,Mukhamejanova Aigul4,Orazbayev Batyr5ORCID,Svirina Anastasia6

Affiliation:

1. Department of Information Systems, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan

2. Department of Computer Engineering, International University of Information Technologies, Manasa 34, Almaty 050040, Kazakhstan

3. Department of Management and Control in Technical Systems, Vladimir State University, Vladimir 600000, Russia

4. Faculty of Applied Sciences, Esil University, Astana 010005, Kazakhstan

5. Department of System Analysis and Control, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan

6. Department of Information Technology, Financial University under the Government of the Russian Federation, Leningrad Avenue, 49, Moscow 125993, Russia

Abstract

Assessment of the current state of the near-surface part of the geological environment and understanding of its layered structure play an important role in various scientific and applied fields. The presented work is devoted to the application of phasometric modifications of geoelectric control methods to solve the problem of the detailed complex study of the underground layers of the environment in the process of drilling operations with the use of special equipment. These studies are based on the analysis of variations in phase parameters and characteristics of an artificially excited multiphase electric field to assess poorly distinguishable details and changes in the layered structure of the medium. The proposed method has increased accuracy, sensitivity and noise proofness of measurements, which allows for extracting detailed information about the heterogeneity, composition and stratification of underground geological formations not only in the zone where the drill makes contact with the medium, but also in the entire control zone. This paper considers practical mathematical models of phase images for basic scenarios of drill penetration between the layers of the near-surface part of the geological medium with different characteristics, obtained by means of approximation apparatus based on continuous piecewise linear functions, and also suggests the use of modern machine learning methods for intelligent analysis of its structure. Studying the phase shifts in electrical signals during drilling highlights their value for understanding the dynamics of soil response to the process. The observed signal changes during the drilling cycle reveal in detail the heterogeneity in soil structure and its response to changes caused by drilling. The stability of phase shifts at the last stages of the process indicates a quasi-equilibrium state. The results make a significant contribution to geotechnical science by offering an improved approach to monitoring a layered structure without the need for deep drilling.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3