The Wave Equation for a Moving Source and a Moving Receiver

Author:

Dodig Hrvoje1ORCID

Affiliation:

1. Department of Electrical and Information Technology, Faculty of Maritime Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia

Abstract

The ordinary 3D wave equation for nondissipative, homogeneous, isotropic media admits solutions where the point sources are permitted to move, but as shown in this paper, it does not admit solutions where the receiver is allowed to move. To overcome this limitation, a new wave equation that permits both the receiver and the source to move is derived in this paper. This new wave equation is a generalization of the standard wave equation, and it reduces to the standard wave equation when the receiver is at rest. To derive this new wave equation, we first mathematically define a diverging spherical wave caused by a stationary point source. From this purely mathematical definition, the wave equation for a stationary source and a moving receiver is derived, together with a corresponding free-space Green function. Utilizing the derived Green function, it is shown that unlike the standard wave equation this new wave equation also permits solutions where both the receiver and the source are permitted to move. In conclusion, this paper demonstrates that, instead of an ordinary wave equation, the wave equation for a moving source and a moving receiver governs the waves emitted by moving point sources and received by moving receivers. This new wave equation has possible applications in acoustics, electrodynamics, and other physical sciences.

Funder

Faculty of Maritime Studies, University of Split, Split, Croatia

Publisher

MDPI AG

Reference36 articles.

1. Kirkwood, J. (2013). Mathematical Physics with Partial Differential Equations, Academic Press.

2. Evans, L. (1998). Partial Differential Equations, American Mathematical Society.

3. De la Propagation du Son;Euler;Mém. Acad. Sci. Berlin,1766

4. Kline, M. (1972). Mathematical Thought from Ancient to Modern Times, Oxford University Press.

5. Royer, D., and Dieulesaint, E. (2000). Elastic Waves in Solids I, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3