Learning from Feature and Global Topologies: Adaptive Multi-View Parallel Graph Contrastive Learning

Author:

Song Yumeng1,Li Xiaohua1,Li Fangfang1ORCID,Yu Ge1ORCID

Affiliation:

1. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

To address the limitations of existing graph contrastive learning methods, which fail to adaptively integrate feature and topological information and struggle to efficiently capture multi-hop information, we propose an adaptive multi-view parallel graph contrastive learning framework (AMPGCL). It is an unsupervised graph representation learning method designed to generate task-agnostic node embeddings. AMPGCL constructs and encodes feature and topological views to mine feature and global topological information. To encode global topological information, we introduce an H-Transformer to decouple multi-hop neighbor aggregations, capturing global topology from node subgraphs. AMPGCL learns embedding consistency among feature, topology, and original graph encodings through a multi-view contrastive loss, generating semantically rich embeddings while avoiding information redundancy. Experiments on nine real datasets demonstrate that AMPGCL consistently outperforms thirteen state-of-the-art graph representation learning models in classification accuracy, whether in homophilous or non-homophilous graphs.

Publisher

MDPI AG

Reference61 articles.

1. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., and Hjelm, R.D. (2019, January 6–9). Deep Graph Infomax. Proceedings of the ICLR, New Orleans, LA, USA.

2. Gong, X., Yang, C., and Shi, C. (2023, January 7–14). MA-GCL: Model augmentation tricks for graph contrastive learning. Proceedings of the AAAI, Washington, DC, USA.

3. Li, W.Z., Wang, C.D., Xiong, H., and Lai, J.H. (2023, January 6–10). Homogcl: Rethinking homophily in graph contrastive learning. Proceedings of the KDD, Long Beach, CA, USA.

4. Song, Y., Gu, Y., Li, T., Qi, J., Liu, Z., Jensen, C.S., and Yu, G. (2024). CHGNN: A semi-supervised contrastive hypergraph learning network. IEEE Trans. Knowl. Data Eng.

5. Kipf, T.N., and Welling, M. (2017, January 24–26). Semi-Supervised Classification with Graph Convolutional Networks. Proceedings of the ICLR, Toulon, France.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3