A Novel Data Reduction Approach for Structural Health Monitoring Systems

Author:

Bolandi Hamed,Lajnef Nizar,Jiao Pengcheng,Barri Kaveh,Hasni Hassene,Alavi Amir H.ORCID

Abstract

The massive amount of data generated by structural health monitoring (SHM) systems usually affects the system’s capacity for data transmission and analysis. This paper proposes a novel concept based on the probability theory for data reduction in SHM systems. The beauty salient feature of the proposed method is that it alleviates the burden of collecting and analysis of the entire strain data via a relative damage approach. In this methodology, the rate of variation of strain distributions is related to the rate of damage. In order to verify the accuracy of the approach, experimental and numerical studies were conducted on a thin steel plate subjected to cyclic in-plane tension loading. Circular holes with various sizes were made on the plate to define damage states. Rather than measuring the entire strain response, the cumulative durations of strain events at different predefined strain levels were obtained for each damage scenario. Then, the distribution of the calculated cumulative times was used to detect the damage progression. The results show that the presented technique can efficiently detect the damage progression. The damage detection accuracy can be improved by increasing the predefined strain levels. The proposed concept can lead to over 2500% reduction in data storage requirement, which can be particularly important for data generation and data handling in on-line SHM systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated structural health monitoring in bridge engineering;Automation in Construction;2022-04

2. A New Structural Health Monitoring Approach Based on Smartphone Measurements of Magnetic Field Intensity;IEEE Instrumentation & Measurement Magazine;2021-06

3. Feature Engineering for Structural Health Monitoring (SHM);Advances in Data Mining and Database Management;2021

4. Artificial intelligence-based smart engineering education;Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020;2020-04-23

5. Piezoceramic-Based Damage Monitoring of Concrete Structure for Underwater Blasting;Sensors;2020-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3