Delving into the Impacts of Different Easily Degradable Carbon Sources on the Degradation Characteristics of 2,4,6-Trichlorophenol and Microbial Community Properties

Author:

Wang Jianguang123,Fang Haifeng13,Li Shiyi13,Yu Hailan13

Affiliation:

1. PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China

2. National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China

3. Huadong Eco-Environmental Engineering Research Institute of Zhejiang Province, Hangzhou 311122, China

Abstract

In chlorophenol wastewater treatment, adding easily degradable carbon sources, such as methanol, ethanol, sodium acetate, and sodium propionate, significantly improves the chlorophenol removal efficiency. This study systematically compares these conventional carbon sources in different sequencing batch reactors to understand their specific effects on both 2,4,6-trichlorophenol (2,4,6-TCP) degradation efficiency and microbial abundance. In a 35-day experiment, as a carbon source, ethanol exhibited a lower 2,4,6-TCP degradation concentration (77.56 mg/L) than those of methanol, sodium acetate, and sodium propionate, which achieved higher degradation concentrations: 123.89 mg/L, 170.96 mg/L, and 151.79 mg/L, respectively. As a carbon source, sodium acetate enhanced extracellular polymeric substance production (200.80 mg/g·VSS) by microorganisms, providing protection against the toxicity of chlorophenol and resulting in a higher 2,4,6-TCP removal concentration. Metagenomics identified crucial metabolic genes, including PcpA, chqB, Mal-r, pcaI, pcaF, and fadA. The abundance of genera containing the chqB gene correlated positively with the metabolic capacity for 2,4,6-TCP. Moreover, small molecular carbon sources such as methanol, sodium acetate, and sodium propionate promoted the enrichment of genera with functional genes.

Funder

PowerChina Huadong Engineering Corporation Limited

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3