Redundant and Distinct Roles of Two 14-3-3 Proteins in Fusarium sacchari, Pathogen of Sugarcane Pokkah Boeng Disease

Author:

Chen Yuejia1ORCID,Yao Ziting2,Zhao Lixian3,Yu Mei1,Chen Baoshan13,Zou Chengwu13ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry & Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China

2. Plant Protection Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007, China

3. Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China

Abstract

Fusarium sacchari, a key pathogen of sugarcane, is responsible for the Pokkah boeng disease (PBD) in China. The 14-3-3 proteins have been implicated in critical developmental processes, including dimorphic transition, signal transduction, and carbon metabolism in various phytopathogenic fungi. However, their roles are poorly understood in F. sacchari. This study focused on the characterization of two 14-3-3 protein-encoding genes, FsBmh1 and FsBmh2, within F. sacchari. Both genes were found to be expressed during the vegetative growth stage, yet FsBmh1 was repressed at the sporulation stage in vitro. To elucidate the functions of these genes, the deletion mutants ΔFsBmh1 and ΔFsBmh2 were generated. The ΔFsBmh2 exhibited more pronounced phenotypic defects, such as impaired hyphal branching, septation, conidiation, spore germination, and colony growth, compared to the ΔFsBmh1. Notably, both knockout mutants showed a reduction in virulence, with transcriptome analysis revealing changes associated with the observed phenotypes. To further investigate the functional interplay between FsBmh1 and FsBmh2, we constructed and analyzed mutants with combined deletion and silencing (ΔFsBmh/siFsBmh) as well as overexpression (O-FsBmh). The combinations of ΔFsBmh1/siFsBmh2 or ΔFsBmh2/siFsBmh1 displayed more severe phenotypes than those with single allele deletions, suggesting a functional redundancy between the two 14-3-3 proteins. Yeast two-hybrid (Y2H) assays identified 20 proteins with pivotal roles in primary metabolism or diverse biological functions, 12 of which interacted with both FsBmh1 and FsBmh2. Three proteins were specifically associated with FsBmh1, while five interacted exclusively with FsBmh2. In summary, this research provides novel insights into the roles of FsBmh1 and FsBmh2 in F. sacchari and highlights potential targets for PBD management through the modulation of FsBmh functions.

Funder

National Natural Science Foundation, China

Guangxi Department of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3