Structural Connectivity of Sediment Affected by Check Dams in Loess Hilly-Gully Region, China

Author:

Bai Leichao,Jiao Juying,Wang Nan,Chen Yulan

Abstract

Check dams play an irreplaceable role in soil and water conservation in the Chinese Loess Plateau region. However, there are few analyses on the connection between check dams and the downstream channel and the impact on structural connectivity and sediment interception efficiency. Based on a field survey, this study classified the connection mode between check dams and the downstream channel, and the actual control area percentage by discharge canal in dam land was used to quantitatively evaluate the degree of the structural connectivity of sediment between the check dam and the downstream channel. The analysis results show that the connection mode can be divided into eleven categories with different structural connectivity. The different connection modes and its combination mode of check dams and downstream channels in dam systems have a large difference, and the structural connectivity of the dam system is less than or equal to that of the sum of single check dams in a watershed. The degree of structural connectivity of a dam system will be greatly reduced if there is a main control check dam with no discharge canal in the lower reaches of the watershed. Compared with a single check dam, the structural connectivity of a dam system is reduced by 0–42.38%, with an average of 11.18%. According to the difference in connection mode and structural connectivity of check dams and dam systems in the four typical small watersheds, the optimization methods for connection mode in series, parallel and hybrid dam systems were proposed. The research results can provide a reference for the impact of a check dam on the sediment connectivity and the sediment interception efficiency in a watershed and can also guide the layout of a dam system and the arrangement of drainage facilities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3