Experimental and Analytical Study of under Water Pressure Wave Induced by the Implosion of a Bubble Generated by Focused Laser

Author:

Han ZhaofengORCID,Mauger CyrilORCID,Chaise ThibautORCID,Elguedj Thomas,Arrigoni MichelORCID,El Hajem Mahmoud,Boisson Nicolas

Abstract

In various domains of material processing, such as surface cleaning and surface treatment, cavitation phenomenon may become an alternative to traditional methods if this phenomenon is well understood. Due to experimental and mathematical difficulties in theoretical models, it is still a challenge to accurately measure the physical mechanism of the fluid/structure interactions. In this study, we verified the feasibility of using polyvinylidene fluoride (PVDF) sensors to quantitatively measure the under-water pressure wave generated by the collapse of a single cavitation bubble. The electrical signal obtained by PVDF can be converted into pressure information only by using the sensor material parameters provided by the supplier. During the conversion process, only the capacitance of the acquisition chain needs to be additionally measured. At the same time, a high-speed video recording system was used to visualize the evolution of the cavitation bubble. The Gilmore analytical model and an associated wave propagation model were used to simulate the pressure peak of the first collapse of the cavitation bubble. This theoretical pressure was compared with the experimental results. The result showed that, for bubbles with a normalized standoff distance γ larger than 5, the PVDF sensor had the ability to quantitatively measure the pressure wave generated by a single cavitation bubble.

Funder

Institut Carnot Ingénierie@lyon

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3