Urban DAS Data Processing and Its Preliminary Application to City Traffic Monitoring

Author:

Wang Hang,Chen Yunfeng,Min Rui,Chen YangkangORCID

Abstract

Distributed acoustic sensing (DAS) is an emerging technology for recording vibration signals via the optical fibers buried in subsurface conduits. Its relatively easy-to-deploy and high spatial and temporal sampling characteristics make DAS an appealing tool to record seismic wavefields at higher quantity and quality than traditional geophones. Considering that the usage of optical fibers in the urban environment has drawn relatively less attention aside from its functionality as a telecommunication cable, we examine its ability to record seismic signals and investigate its preliminary application in city traffic monitoring. To solve the problems that DAS signals are prone to a variety of environmental noise and are generally of weak amplitude compared to noise, we propose a fast workflow for real-time DAS data processing, which can enhance the detection of regular car signals and suppress the other components. We conduct a DAS experiment in Hangzhou, China, a typical metropolitan area that can provide us with a rich data library to validate our DAS data-processing workflow. The well-processed data enable us to extract their slope and coherency attributes that can provide an estimate of real traffic situations. The one-minute (with video validations) and 24 h statistics of these attributes show that the speed and volume of car flow are well correlated demonstrates the robustness of the proposed data processing workflow and great potential of DAS for city traffic monitoring with high precision and convenience. However, challenges also exist in view that all the attributes are statistically analyzed based on the behaviors of a large number of cars, which is meaningful but lacking in precision. Therefore, we suggest developing more quantitative processing and analyzing methods to provide precise information on individual cars in future works.

Funder

Starting funds from Zhejiang University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3