Data Quality: A Negotiator between Paper-Based and Digital Records in Pakistan’s TB Control Program

Author:

Ali Syed,Naureen Farah,Noor Arif,Kamel Boulos Maged,Aamir Javariya,Ishaq Muhammad,Anjum Naveed,Ainsworth John,Rashid Aamna,Majidulla Arman,Fatima Irum

Abstract

Background: The cornerstone of the public health function is to identify healthcare needs, to influence policy development, and to inform change in practice. Current data management practices with paper-based recording systems are prone to data quality defects. Increasingly, healthcare organizations are using technology for the efficient management of data. The aim of this study was to compare the data quality of digital records with the quality of the corresponding paper-based records using a data quality assessment framework. Methodology: We conducted a desk review of paper-based and digital records over the study duration from April 2016 to July 2016 at six enrolled tuberculosis (TB) clinics. We input all data fields of the patient treatment (TB01) card into a spreadsheet-based template to undertake a field-to-field comparison of the shared fields between TB01 and digital data. Findings: A total of 117 TB01 cards were prepared at six enrolled sites, whereas just 50% of the records (n = 59; 59 out of 117 TB01 cards) were digitized. There were 1239 comparable data fields, out of which 65% (n = 803) were correctly matched between paper based and digital records. However, 35% of the data fields (n = 436) had anomalies, either in paper-based records or in digital records. The calculated number of data quality issues per digital patient record was 1.9, whereas it was 2.1 issues per record for paper-based records. Based on the analysis of valid data quality issues, it was found that there were more data quality issues in paper-based records (n = 123) than in digital records (n = 110). Conclusion: There were fewer data quality issues in digital records as compared with the corresponding paper-based records of tuberculosis patients. Greater use of mobile data capture and continued data quality assessment can deliver more meaningful information for decision making.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3