W-GUN: Whale Optimization for Energy and Delay-Centric Green Underwater Networks

Author:

Rathore Rajkumar Singh,Sangwan Suman,Mazumdar SukritiORCID,Kaiwartya OmprakashORCID,Adhikari Kabita,Kharel RupakORCID,Song HoubingORCID

Abstract

Underwater sensor networks (UWSNs) have witnessed significant R&D attention in both academia and industry due to their growing application domains, such as border security, freight via sea or river, natural petroleum production and the fishing industry. Considering the deep underwater-oriented access constraints, energy-centric communication for the lifetime maximization of tiny sensor nodes in UWSNs is one of the key research themes in this domain. Existing literature on green UWSNs are majorly adapted from the existing techniques in traditional wireless sensor network relying on geolocation and the quality of service-centric underwater relay node selection, without paying much attention to the dynamic underwater network environments. To this end, this paper presents an adapted whale and wolf optimization-based energy and delay-centric green underwater networking framework (W-GUN). It focuses on exploiting dynamic underwater network characteristics by effectively utilizing underwater whale-centric optimization in relay node selection. Firstly, an underwater relay node optimization model is mathematically derived, focusing on underwater whale dynamics for incorporating realistic underwater characteristics in networking. Secondly, the optimization model is used to develop an adapted whale and grey wolf optimization algorithm for selecting optimal and stable relay nodes for centric underwater communication paths. Thirdly, a complete workflow of the W-GUN framework is presented with an optimization flowchart. The comparative performance evaluation attests to the benefits of the proposed framework and is compared to state-of-the-art techniques considering various metrics related to underwater network environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3