Abstract
In this study, the negative differential resistance (NDR) phenomenon in two-terminal devices composed of pyrogallol-formaldehyde/ZrO2 composite materials is investigated. It is demonstrated that the NDR is caused by electrothermal effects, which can be observed through the dependence of the NDR on both voltage and temperature. Additionally, it is showed that the NDR peak current and peak/valley voltages can be effectively modulated using electrical pulses that produce mild Joule heating. This modulation arises from the formation of a conductive metastable state, which decays to equilibrium according to power law kinetics. It is suggested that this metastable state is generated through a reversible structural rearrangement induced by heat. The ability to electronically tune the NDR characteristics of carbon composites may have potential applications in electronically controlled oscillators and neuromorphic circuits.
Funder
the Portuguese Foundation for Science and Technology
FEDER
the Tunisian Ministry of Higher Education
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献