Mechanical Assembly Monitoring Method Based on Semi-Supervised Semantic Segmentation

Author:

Wu Suichao,Chen ChengjunORCID,Wang Jinlei

Abstract

Semantic segmentation of assembly images is to recognize the assembled parts and find wrong assembly operations. However, the training of supervised semantic segmentation requires a large amount of labeled data, which is time-consuming and laborious. Moreover, the sizes of mechanical assemblies are not uniform, leading to low segmentation accuracy of small-target objects. This study proposes an adversarial learning network for semi-supervised semantic segmentation of mechanical assembly images (AdvSemiSeg-MA). A fusion method of ASFF multiscale output is proposed, which combines the outputs of different dimensions of ASFF into one output. This fusion method can make full use of the high-level semantic features and low-level fine-grained features, which helps to improve the segmentation accuracy of the model for small targets. Meanwhile, the multibranch structure RFASPP module is proposed, which enlarges the receptive field and ensures the target object is close to the center of the receptive field. The CoordConv module is introduced to allow the convolution to perceive spatial position information, thus enabling the semantic segmentation network to be position-sensitive. In the discriminator network, spectral normalization is introduced. The proposed method obtains state-of-art results on the synthesized assembly depth image dataset and performs well on actual assembly RGB image datasets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards cognition-augmented human-centric assembly: A visual computation perspective;Robotics and Computer-Integrated Manufacturing;2025-02

2. FE-Net: Feature enhancement segmentation network;Neural Networks;2024-06

3. Enhanced Semantic Segmentation with Hierarchical Upsampling and CBAM Attention Mechanism;2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3