Experimental and Modeling Investigation for Slugging Pressure under Zero Net Liquid Flow in Underwater Compressed Gas Energy Storage Systems

Author:

Liang ChengyuORCID,Xiong WeiORCID,Wang Meiling,Ting David S. K.,Carriveau Rupp,Wang ZhiwenORCID

Abstract

As an emerging flexible-scale energy storage technology, underwater compressed gas energy storage (UW-CGES) is regarded as a promising energy storage option for offshore platforms, offshore renewable energy farms, islands, coastal cities, etc. Liquid accumulation often occurs in underwater gas transmission pipelines, which is a challenge to overcome. In this study, an experimental investigation is carried out on the pressure distribution characteristics of liquid accumulation flow in hilly terrain under the condition of Zero Net Liquid Flow. A slug flow pressure model with different inclination angles at four times is established and verified, and its error range is within ±20%. Analysis revealed that reduction and growth in pressure difference are related to the outflow of slug in an inclined pipe. A high-speed camera is used to capture the movement of liquid accumulation under Zero Net Liquid Flow (ZNLF) and record the associated dynamic parameters. By imaging the motion of liquid accumulation and detecting the pressure changes in the pipeline at various times, the pressure fluctuation in the pipeline at the slug flow cause is studied. Outcomes from this work can be leveraged to help further the development of underwater compressed gas energy storage technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3