Pix2Pix and Deep Neural Network-Based Deep Learning Technology for Predicting Vortical Flow Fields and Aerodynamic Performance of Airfoils

Author:

Song Han-Seop,Mugabi JophousORCID,Jeong Jae-Ho

Abstract

Traditional computational fluid dynamics (CFD) methods are usually used to obtain information about the flow field over an airfoil by solving the Navier–Stokes equations for the mesh with boundary conditions. These methods are usually costly and time-consuming. In this study, the pix2pix method, which utilizes conditional generative adversarial networks (cGANs) for image-to-image translation, and a deep neural network (DNN) method were used to predict the airfoil flow field and aerodynamic performance for a wind turbine blade with various shapes, Reynolds numbers, and angles of attack. Pix2pix is a universal solution to the image-to-image translation problem that utilizes cGANs. It was successfully implemented to predict the airfoil flow field using fully implicit high-resolution scheme-based compressible CFD codes with genetic algorithms. The results showed that the vortical flow fields of the thick airfoils could be predicted well using the pix2pix method as a result of deep learning.

Funder

Ministry of Science, ICT and Future Planning

Korean government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Aerodynamics Prediction of Wedge Tail Airfoils Using Multi-head Perceptron Network;Arabian Journal for Science and Engineering;2024-01-31

2. Fast flow field prediction of three-dimensional hypersonic vehicles using an improved Gaussian process regression algorithm;Physics of Fluids;2024-01-01

3. Monocular Depth Estimation Modification Using Pix2Pix Model with SELU and Alpha Dropout;2023 14th International Conference on Information & Communication Technology and System (ICTS);2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3