A Lightweight Pathological Gait Recognition Approach Based on a New Gait Template in Side-View and Improved Attention Mechanism

Author:

Li Congcong1ORCID,Wang Bin2,Li Yifan2,Liu Bo1

Affiliation:

1. College of Information Science and Technology, Hebei Agricultural University, Baoding 071001, China

2. Hebei Key Laboratory of Agricultural Big Data, Baoding 071001, China

Abstract

As people age, abnormal gait recognition becomes a critical problem in the field of healthcare. Currently, some algorithms can classify gaits with different pathologies, but they cannot guarantee high accuracy while keeping the model lightweight. To address these issues, this paper proposes a lightweight network (NSVGT-ICBAM-FACN) based on the new side-view gait template (NSVGT), improved convolutional block attention module (ICBAM), and transfer learning that fuses convolutional features containing high-level information and attention features containing semantic information of interest to achieve robust pathological gait recognition. The NSVGT contains different levels of information such as gait shape, gait dynamics, and energy distribution at different parts of the body, which integrates and compensates for the strengths and limitations of each feature, making gait characterization more robust. The ICBAM employs parallel concatenation and depthwise separable convolution (DSC). The former strengthens the interaction between features. The latter improves the efficiency of processing gait information. In the classification head, we choose to employ DSC instead of global average pooling. This method preserves the spatial information and learns the weights of different locations, which solves the problem that the corner points and center points in the feature map have the same weight. The classification accuracies for this paper’s model on the self-constructed dataset and GAIT-IST dataset are 98.43% and 98.69%, which are 0.77% and 0.59% higher than that of the SOTA model, respectively. The experiments demonstrate that the method achieves good balance between lightweightness and performance.

Funder

the 2023 Program for Introducing Overseas Educated Personnel in Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3