Depth-Sensing-Based Algorithm for Chest Morphology Assessment in Children with Cerebral Palsy

Author:

Tomašević Olivera1ORCID,Ivančić Aleksandra2ORCID,Mejić Luka1ORCID,Lužanin Zorana3ORCID,Jorgovanović Nikola1ORCID

Affiliation:

1. Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

2. Vukov Centar Os-Ossis, 21000 Novi Sad, Serbia

3. Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

This study introduced a depth-sensing-based approach with robust algorithms for tracking relative morphological changes in the chests of patients undergoing physical therapy. The problem that was addressed was the periodic change in morphological parameters induced by breathing, and since the recording was continuous, the parameters were extracted for the moments of maximum and minimum volumes of the chest (inspiration and expiration moments), and analyzed. The parameters were derived from morphological transverse cross-sections (CSs), which were extracted for the moments of maximal and minimal depth variations, and the reliability of the results was expressed through the coefficient of variation (CV) of the resulting curves. Across all subjects and levels of observed anatomy, the mean CV for CS depth values was smaller than 2%, and the mean CV of the CS area was smaller than 1%. To prove the reproducibility of measurements (extraction of morphological parameters), 10 subjects were recorded in two consecutive sessions with a short interval (2 weeks) where no changes in the monitored parameters were expected and statistical methods show that there was no statistically significant difference between the sessions, which confirms the reproducibility hypothesis. Additionally, based on the representative CSs for inspiration and expirations moments, chest mobility in quiet breathing was examined, and the statistical test showed no difference between the two sessions. The findings justify the proposed algorithm as a valuable tool for evaluating the impact of rehabilitation exercises on chest morphology.

Funder

Ministry of Science, Technological Development and Innovation

Faculty of Technical Sciences, University of Novi Sad

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3