Author:
Cheng Po,Guo Jia,Yao Kai,Liu Chaofan,Liu Xiushui,Liu Fei
Abstract
The behavior of buried offshore pipelines subjected to upheaval buckling has attracted much attention in recent years. Numerous researchers have made great efforts to investigate the influence of different soil cover depth ratios, soil strengths and pipe-soil interfaces on failure mechanisms and bearing capacities during pipeline uplift. However, attention to soil spatial variability has been relatively limited. To address this gap, a random small-strain finite element analysis has been conducted and reported in this paper to evaluate the influence of the random distribution of soil strength on pipe uplift response. The validity of the numerical model was verified by comparison with the results presented in the previous literature. The spatial variation of soil strength was simulated by a random field. The effect of soil variability on the failure mechanism was determined by comparing the displacement contours of each random realization. Probabilistic analyses were performed on the random uplift capacity obtained by a series of Monte Carlo simulations, and the relationship between the failure probability and the safety factor was also determined. The findings of the present work might serve as a reference for the safety designs of pipelines.
Funder
Shandong Excellent Young Scientists Fund Program
Shandong Provincial Natural Science Foundation
Guangdong Basic and Applied Basic Research Foundation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献