Environmental Impact of Remanufacturing Mining Machinery

Author:

Kanazawa TomohisaORCID,Matsumoto MitsutakaORCID,Yoshimoto Mitsuhiro,Tahara Kiyotaka

Abstract

In this study, we assessed the environmental impact of the remanufacturing of mining machinery components, by analyzing commonly used parts in a machine setup. No previous studies have conducted a detailed environmental impact assessment of any manufacturing processes for new or remanufactured components used in mining machinery. We analyzed the system boundaries and conducted inventory analysis to understand their function and determine their unit role in the machine. Then, we evaluated the environmental impacts of the manufacturing processes for the subparts and assy parts, along with the impact of logistic and remanufacturing processes. In particular, we assessed hydraulic equipment, which is a common component of mining machinery, and conducted a comparative assessment of the environmental impacts of new and remanufactured components. Our results indicated that the global warming potential (GWP) per mining machine throughout its lifecycle (LC) could be reduced by ~194 ton-CO2eq./LC. Assuming that the number of mining machinery in operation at a global scale is 571 machines (or units) per year, the GWP would be reduced by ~110,000 ton-CO2eq./year.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference38 articles.

1. Global human-made mass exceeds all living biomass

2. United Nations https://sustainabledevelopment.un.org/partnership/?p=573

3. International Resource Panel (UNEP-IPR): Re-defining Value—The manufacturing revolution. Remanufacturing, Refurbishment, Repair and Direct Reuse in the Circular Economy https://www.resourcepanel.org/reports/re-defining-value-manufacturing-revolution

4. Remanufactured Goods: An overview of the US and Global Industries, Markets, and Trade,2013

5. A Circular Economy Handbook for Business and Supply Chains;Catherine,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3