Abstract
Renewable energy systems such as Photovoltaic (PV) have become one of the best options for supplying electricity at the distribution network level. This is mainly because the PV system is sustainable, environmentally friendly, and is a low-cost form of energy. The intermittent and unpredictable nature of renewable energy sources which leads to a mismatch between the power generation and load demand is the challenge to having 100% renewable power networks. Therefore, an Energy Storage System (ESS) can be a significant solution to overcome these challenges and improve the reliability of the network. In Jordan, the energy sector is facing a number of challenges due to the high energy-import dependency, high energy costs, and the inadequate electrification of rural areas. In this paper, the optimal integration of PV and ESS systems is designed and developed for a distribution network in Jordan. The economic and energy performance of the network and a proposed power network under different optimization algorithms and power network operation scenarios are investigated. Metaheuristic optimization algorithms, namely: Golden Ratio Optimization Method (GROM) and Particle Swarm Optimization (PSO) algorithms, are employed to find the optimal configurations and integrated 100% PV and ESS for the microgrid.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献