Application of a Fuzzy Two-Stage Chance Constrained Stochastic Programming Model for Optimization of the Ecological Services Value of the Interconnected River System Network Project in the Western Jilin Province, China

Author:

Cai Baofeng,Meng Chong,Wang Xian’en,Li Yu

Abstract

Incremental ecological service value is an important assessment indicator for ecosystem restoration projects, such as the interconnected river system network project in western Jilin Province, China. In this paper, a fuzzy two-stage chance-constrained stochastic programming (FTSCCP) model is proposed for the optimization of regional incremental ecological service value through adjustments to the original water diversions and ecological water supplement schemes for ecosystem restoration under different management requirements and scenarios. The proposed method can effectively address uncertainties such as fuzzy parameters, probability distributions, and random variables in optimizing processes simultaneously. The results reveal that, under the requirement of meeting the original plan, a decrease in restoration scale would mainly appear under low-flow scenarios, and for the other scenarios, the original plan would be fully realized with an increase in flood utilization and a decrease in normal water supplementation. For the requirement of maximizing the incremental ecological service value, the adjustments would mainly be increases in water supplementation for reed wetlands and marsh wetlands and decreases in water surface area, including fish ponds and crab ponds. The ecological service values would be 11,256.79 million CNY (Chinese Yuan), 16,465.11 million CNY and 17,639.59 million CNY under low-, normal- and high-flow scenarios, respectively, with increases of 3.2%, 6.9% and 14.5% compared to the values based on the requirement of meeting the original plan. The results would be helpful for guiding regional ecosystem restoration and water resource management in the western Jilin Province.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3