Strain Energy and Entropy Based Scaling of Buckling Modes

Author:

Kala Zdeněk1ORCID

Affiliation:

1. Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, 602 00 Brno, Czech Republic

Abstract

A new utilization of entropy in the context of buckling is presented. The novel concept of connecting the strain energy and entropy for a pin-ended strut is derived. The entropy of the buckling mode is extracted through a surrogate model by decomposing the strain energy into entropy and virtual temperature. This concept rationalizes the ranking of buckling modes based on their strain energy under the assumption of given entropy. By assigning identical entropy to all buckling modes, they can be ranked according to their deformation energy. Conversely, with identical strain energy assigned to all the modes, ranking according to entropy is possible. Decreasing entropy was found to represent the scaling factors of the buckling modes that coincide with the measurement of the initial out-of-straightness imperfections in IPE160 beams. Applied to steel plane frames, scaled buckling modes can be used to model initial imperfections. It is demonstrated that the entropy (scale factor) for a given energy roughly decreases with the inverse square of the mode index. For practical engineering, this study presents the possibility of using scaled buckling modes of steel plane frames to model initial geometric imperfections. Entropy proves to be a valuable complement to strain energy in structural mechanics.

Funder

The Czech Science Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference49 articles.

1. Bažant, Z.P., and Cedolin, L. (1991). Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, Oxford University Press.

2. Galambos, T.V. (1998). Guide to Stability Design Criteria for Metal Structures, Wiley. [5th ed.].

3. Historical sense in the historians of the theory of elasticity;Godoy;Meccanica,2006

4. Euler’s classic paper “On the strength of columns”;J. Phys.,1947

5. Euler, L. (1744). Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accepti, Marcum Michaelem Bosquet.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3