Abstract
Background: The existing contract net protocol has low overall efficiency during the bidding and release period, and a large amount of redundant information is generated during the negotiation process. Methods: On the basis of an ant colony algorithm, the dynamic response threshold model and the flow of pheromone model were established, then the complete task allocation process was designed. Three experimental settings were simulated under different conditions. Results: When the number of agents was 20 and the maximum load value was L max = 3 , the traffic and run-time of task allocation under the improved contract net protocol decreased. When the number of tasks and L max was fixed, the improved contract net protocol had advantages over the dynamic contract net and classical contract net protocols in terms of both traffic and run-time. Setting up the number of agents, tasks and L max to improve the task allocation under the contract net not only minimizes the number of errors, but also the task completion rate reaches 100%. Conclusions: The improved contract net protocol can reduce the traffic and run-time compared with classical contract net and dynamic contract net protocols. Furthermore, the algorithm can achieve better assignment results and can re-forward all erroneous tasks.
Funder
National Natural Science Foundation of China
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Reference27 articles.
1. Multi-Agent Systems Applications in Energy Optimization Problems: A State-of-the-Art Review
2. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver
3. Contract Net Model Based on Case Based Reasoning;Wunan;Mini-Micro Syst.,2005
4. A collaboration algorithm for computer generated forces based on multi-agent systems;Chen;Comput. Simul.,2010
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献