Abstract
Continuous movements of the hand contain discrete expressions of meaning, forming a variety of semantic gestures. For example, it is generally considered that the bending of the finger includes three semantic states of bending, half bending, and straightening. However, there is still no research on the number of semantic states that can be conveyed by each movement primitive of the hand, especially the interval of each semantic state and the representative movement angle. To clarify these issues, we conducted experiments of perception and expression. Experiments 1 and 2 focused on perceivable semantic levels and boundaries of different motion primitive units from the perspective of visual semantic perception. Experiment 3 verified and optimized the segmentation results obtained above and further determined the typical motion values of each semantic state. Furthermore, in Experiment 4, the empirical application of the above semantic state segmentation was illustrated by using Leap Motion as an example. We ended up with the discrete gesture semantic expression space both in the real world and Leap Motion Digital World, containing the clearly defined number of semantic states of each hand motion primitive unit and boundaries and typical motion angle values of each state. Construction of this quantitative semantic expression will play a role in guiding and advancing research in the fields of gesture coding, gesture recognition, and gesture design.
Funder
National Natural Science Foundation of China
Science and Technology on Avionics Integration Laboratory and Aeronautical Science Fund
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献