Recent Approaches to Achieve High Temperature Operation of Nafion Membranes

Author:

Xu Guoxiao1,Dong Xinwei1,Xue Bin2,Huang Jianyou2ORCID,Wu Junli1,Cai Weiwei3

Affiliation:

1. School of Electronic Engineering, Guangxi University of Science and Technology, Guangxi 545006, China

2. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Guangxi 545006, China

3. Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China

Abstract

A proton exchange membrane fuel cell (PEMFC), as an efficient energy conversion device, has many advantages, such as high energy conversion efficiency and environmentally friendly zero emissions, and is expected to have great potential for addressing the uneven distribution of global green energy. As a core component, the performance of the proton exchange membrane (PEM) directly affects the overall output of the fuel cell system. At present, Nafion membranes with good, comprehensive properties are the most widely used commercial proton exchange membrane materials. However, Nafion membranes demonstrate a great inadaptability with an increase in operating temperatures, such as a rapid decay in proton conductivity. Therefore, enhancing the overall performance of Nafion membranes under high temperatures and low relative humidity (RH) has become an urgent problem. Although many efforts have been made to solve this problem, it is difficult to find the balance point between high-temperature conductivity and overall stability for researchers. In this paper, we summarize the recent approaches to improving the operating temperature of Nafion membranes from the following two perspectives: (1) using different materials for the modification of Nafion membranes, and (2) applying different modification methods to the Nafion membranes. Based on the structural and functional characteristics of Nafion, the non-destructive targeted filling of fillers and the efficient synergy of the two-phase region are two vital research directions for the preparation of high-performance composite membranes.

Funder

Research Basic Ability Improvement Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference141 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3