Analysis of Asymmetric Hybrid Modular Multilevel Topology for Medium-Voltage Front-End Converter Applications

Author:

Ali Muhammad1ORCID,Farooq Ajmal1,Khan Muhammad Qasim2,Khan Muhammad Mansoor2,Mihet-Popa Lucian3ORCID

Affiliation:

1. Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan

2. Department of Electrical Engineering, SEIEE, Shanghai Jiao Tong University, Shanghai 200240, China

3. Faculty of Electrical Engineering, Ostfold University College, 1757 Halden, Norway

Abstract

Modular multilevel converters (MMCs) have been conceived as an alternative in front-end converter applications to enhance the converter system’s reliability, minimize total harmonic distortion, and improve power quality. These converters utilize several DC-link capacitors and power electronic switches, along with switches operating with high switching frequencies, to attain the desired characteristics. Thereby, this paper systematically proposes a novel three-phase asymmetric hybrid modular multilevel converter (AHMMC) for front-end converters used in lower-medium-voltage applications. The AHMMC configuration is based on a three-phase converter connected to a per-phase series arrangement with a cascaded converter module (CCM). The study investigates the AHMMC and proposes a control scheme, which minimizes the voltage range on switches and maintains the current to its reference value. Furthermore, the study also introduces an active balancing of voltage across DC-link capacitors based on the phase opposition disposition PWM (POD-PWM) method. Our new configuration has features such as low switching loss, reduced DC-link voltage, a wider modulation range for the unity power factor (PF), and low voltage and current harmonic distortion. The simulation results are added to verify the performance of the new AHMMC topology and the usefulness of the modular control scheme. In addition, a low-voltage laboratory prototype based on customized control and power boards is built to validate the proposed converter and its control scheme in practice.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3