Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India

Author:

Chakraborty Samrat1ORCID,Mukherjee Debottam2,Guchhait Pabitra Kumar3ORCID,Bhattacharjee Somudeep4,Abdelaziz Almoataz Youssef5ORCID,El-Shahat Adel6ORCID

Affiliation:

1. Department of Electrical Engineering, National Institute of Technology Arunachal Pradesh, Jote 791113, Arunachal Pradesh, India

2. Department of Electrical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India

3. Department of Electrical Engineering, G. H. Raisoni College of Engineering and Management, Pune 412207, Maharashtra, India

4. Department of Electrical Engineering, Tripura University, Agartala 799022, Tripura, India

5. Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt

6. Energy Technology Program, School of Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

Integration of a grid with an under-developed remote hilly area faces various technical and geographical challenges. Thus, generation of power from renewable resources in off-grid conditions has become one of the most cost-effective and reliable solutions for such areas. The present research deals with the possible application of an integrated solar/hydro/biomass/battery-based system to generate power in autonomous mode for a remote hilly town of a northeastern Indian state. Four different cases of the integrated energy system (IES) were designed using the hybrid optimization model for electric renewable (HOMER Pro), examining the performance of each case. The best combination of the integrated system was chosen out of several cases depending upon the optimized solution that can meet the load demand of the proposed hilly town sustainably, reliably and continuously. The simulation results show that the integrated battery/biomass/hydro/solar-based system is the best optimized, cheapest and most suitable solution to generate renewable-based power for the specified location, having the lowest net present cost (NPC) of USD 644,183.70 with a levelized cost of energy (COE) of 0.1282 USD/kWh. Further, the result also indicates that the optimized configuration reduces the emission of CO2 gas in the environment compared to the battery/biomass/hydro system having the worst emission rate. A sensitivity study was also carried out with variation in load, hydro stream flow and solar irradiation, respectively that may largely affect the technical as well as economical aspect of an integrated energy system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3