On Differential Imaging Using Electromagnetic Simulation for Vehicular Antenna Signature Analysis

Author:

Solano-Perez Jose AntonioORCID,Martínez-Inglés María-TeresaORCID,Molina-Garcia-Pardo Jose-Maria,Romeu JordiORCID,Jofre-Roca Lluis,Ballesteros-Sánchez ChristianORCID,Rodríguez José-VíctorORCID,Mateo-Aroca AntonioORCID,Guzmán-Quirós Raúl

Abstract

The current trend in vehicles is to integrate a wide number of antennae and sensors operating at a variety of frequencies for sensing and communications. The integration of these antennae and sensors in the vehicle platform is complex because of the way in which the antenna radiation patterns interact with the vehicle structure and other antennae/sensors. Consequently, there is a need to study the radiation pattern of each antenna or, alternatively, the currents induced on the surface of the vehicle to optimize the integration of multiple antennae. The novel concept of differential imaging represents one method by which it is possible to obtain the surface current distribution without introducing any perturbing probe. The aim of this study was to develop and confirm the assumptions that underpin differential imaging by means of full-wave electromagnetic simulation, thereby providing additional verification of the concept. The simulation environment and parameters were selected to replicate the conditions in which real measurements were taken in previous studies. The simulations were performed using Ansys HFSS simulation software. The results confirm that the approximations are valid, and the differential currents are representative of the induced surface currents generated by a monopole positioned on the top of a vehicle.

Funder

Ministry of Education and Science

Ministry of Education, Science and Technology

Consell Català de Recerca i Innovació

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3