Combination of Global Features for the Automatic Quality Assessment of Retinal Images

Author:

Jiménez-García Jorge,Romero-Oraá Roberto,García María,López-Gálvez María,Hornero RobertoORCID

Abstract

Diabetic retinopathy (DR) is one of the most common causes of visual loss in developed countries. Computer-aided diagnosis systems aimed at detecting DR can reduce the workload of ophthalmologists in screening programs. Nevertheless, a large number of retinal images cannot be analyzed by physicians and automatic methods due to poor quality. Automatic retinal image quality assessment (RIQA) is needed before image analysis. The purpose of this study was to combine novel generic quality features to develop a RIQA method. Several features were calculated from retinal images to achieve this goal. Features derived from the spatial and spectral entropy-based quality (SSEQ) and the natural images quality evaluator (NIQE) methods were extracted. They were combined with novel sharpness and luminosity measures based on the continuous wavelet transform (CWT) and the hue saturation value (HSV) color model, respectively. A subset of non-redundant features was selected using the fast correlation-based filter (FCBF) method. Subsequently, a multilayer perceptron (MLP) neural network was used to obtain the quality of images from the selected features. Classification results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity. Results suggest that the proposed RIQA method could be applied in a more general computer-aided diagnosis system aimed at detecting a variety of retinal pathologies such as DR and age-related macular degeneration.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated image quality appraisal through partial least squares discriminant analysis;International Journal of Computer Assisted Radiology and Surgery;2022-06-02

2. Retinal image quality assessment using transfer learning: Spatial images vs. wavelet detail subbands;Ain Shams Engineering Journal;2021-09

3. Improved Fundus Image Quality Assessment: Augmenting Traditional Features with Structure Preserving ScatNet Features in Multicolor Space;2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES);2021-03-01

4. Multi-level Quality Assessment of Retinal Fundus Images using Deep Convolution Neural Networks;Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications;2021

5. Anomaly Prognostication of Retinal Fundus Images Using EALCLAHE Enhancement and Classifying with Support Vector Machine;Lecture Notes in Electrical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3